Full-scale Model Experimental Study on Hydration Heat Temperature Field of Long-span CFST Arch Rib Segment
-
摘要: 为揭示山区大跨钢管混凝土拱桥水化热温度场分布特征及演变机理, 依托雅鲁藏布江特大桥, 开展了强辐射-大温差联合作用下大跨钢管混凝土拱桥节段水化热温度场足尺试验研究和瞬态热分析研究, 提出了水化热温度场计算方法, 建立了温度与太阳辐射、风速、环境温度的直接理论关系. 结果表明:径向温度场夜间呈影响深度D/4的对称三折线分布, 正下午时段呈非对称三折线分布, 在距向阳侧交界面D/8~D3/8位置突变; 周向温度场呈半波比值接近5:1的正弦曲线分布; 向阳侧温度梯度方向不断变化, 最大正温差接近30℃, 最大负温差接近40℃, 涂抹低辐射吸收率材料可有效减小温度梯度. 提出的温度场计算方法在适用性上不受气候环境限制, 公式计算结果与试验结果及有限元结果吻合良好, 表明这种方法可以应用于工程分析.Abstract: To reveal the distribution characteristics and evolution mechanism of hydration heat temperature field of long-span concrete filled steel tubular (CFST) arch bridge in mountainous area, the full-scale model experiment and transient thermal analysis on hydration heat temperature field of long-span CFST arch rib segment with strong radiation and temperature difference were conducted based on the Yarlung Zangbo River Bridge. The calculation method of hydration heat temperature field was proposed, and the direct theoretical relationship between temperature and solar radiation, wind speed and ambient temperature was established. The results show that:The radial temperature field distributes as a symmetric tri-linear model with an influence depth of D/4 at night, and in the afternoon distributes as an asymmetric tri-linear model with a sudden change at D/8~D3/8 from the sunny side interface. The circumferential temperature field distributes sinusoidally with a half wave ratio of about 5:1. The temperature gradient direction on the sunny side changes continuously with a maximum positive temperature difference of 30℃ and a maximum negative temperature difference of 40℃. Coating low radiation absorptivity materials can effectively reduce the temperature gradient. The temperature field calculation method proposed is not limited by climate environment, and the agreement of the final computation results with the experimental data and finite element data indicates indicates the engineering applicability of this method.
-
-
[1] 张峰, 刘佳琪, 高磊, 等. 波形钢腹板PC组合箱梁内衬混凝土部位温度分布研究[J]. 应用基础与工程科学学报, 2020, 28(1):123-133 Zhang Feng, Liu Jiaqi, Gao Lei, et al. Study on temperature distribution of concrete lining of PC composite box girder with corrugated steel webs[J]. Journal of Basic Sciences and Engineering, 2020, 28(1):123-133
[2] 王东升, 安正汉, 孙治国, 等. 铅芯温度效应对隔震桥梁地震反应影响研究[J]. 应用基础与工程科学学报, 2020, 28(5):1172-1186 Wang Dongsheng, An Zhenghan, Sun Zhiguo, et al. Study on influence of lead core temperature effect on seismic response of isolated bridges[J]. Journal of Basic Sciences and Engineering, 2020, 28(1):123-133 [3] Abid S R, Tayš N, Özakça M. Experimental analysis of temperature gradients in concrete box-girders[J]. Construction and Building Materials, 2016, 106:523-532
[4] Kamil G M, Liang Q Q, Hadi M S. Numerical analysis of axially loaded rectangular concrete-filled steel tubular short columns at elevated temperatures[J]. Engineering Structures, 2019, 180(1):89-102.
[5] 周大为, 邓年春, 石拓, 等. 大型钢管混凝土拱桥温度梯度试验研究[J]. 铁道科学与工程学报, 2020, 17(8):2013-2019 Zhou Dawei, Deng Nianchun, Shi Tuo, et al. A large-scale experimental study on temperature gradient of concrete-filled steel tube arch bridge[J]. Journal of Railway Science and Engineering, 2020, 17(8):2013-2019
[6] 周大为, 邓年春, 郭晓, 等. 青藏高原地区钢管混凝土拱桥大温差温度效应[J]. 桂林理工大学学报, 2020, 40(4):735-741 Zhou Dawei, Deng Nianchun, Guo Xiao, et al. Temperature effect of large temperature difference on concrete-filled steel tubular arch bridge in qinghai-tibet Plateau[J]. Journal of Guilin University of Technology, 2020, 40(4):735-741
[7] 周大为, 邓年春, 石拓. 川藏铁路低温灌注钢管混凝土拱肋水化试验研究[J]. 铁道标准设计, 2020, 64(12):56-62 Zhou Dawei, Deng Nianchun, Shi Tuo. Experimental study on hydration of CFST arch rib under low temperature in Sichuan-Tibet Railway[J]. Railway Standard Design, 2020, 64(12):56-62
[8] Shi Tuo, Zheng Jielian, Deng Nianchun, et al. Temperature load parameters and thermal effects of a long-span concrete-filled steel tube arch bridge in tibet[J]. Advances in Materials Science and Engineering, 2020, 97:1-11
[9] 孙建渊, 谢津宝. 基于等效龄期的钢管拱内混凝土硬化过程热应力[J]. 同济大学学报(自然科学版), 2019, 47(6):756-763 Sun Jianyuan, Xie Jinbao. Thermal stress of concrete hardening process in steel tube arch based on equivalent age[J]. Journal of Tongji University(Natural Science Edition), 2019, 47(6):756-763
[10] Liu J, Liu Y, Zhang G, et al. Prediction formula for temperature gradient of concrete-filled steel tubular member with an arbitrary inclination[J]. Journal of Bridge Engineering, 2020, 25(10):04020076
[11] Liu J, Liu Y, Zhang G. Experimental analysis of temperature gradient patterns of concrete-filled steel tubular members[J]. Journal of Bridge Engineering, 2019, 24(11):04019109
[12] Yang D, Chen G, Ding X, et al. Thermal field of large-diameter concrete filled steel tubular members under solar radiation[J]. Computers and Concrete, 2020, 26(4):343-350
[13] Kamil G M, Liang Q Q, Hadi M. Local buckling of steel plates in concrete-filled steel tubular columns at elevated temperatures[J]. Engineering Structures, 2018, 168(1):108-118
[14] 严仁章, 刘佳奇, 刘时龙, 等. 太阳辐射作用下钢管混凝土拱不均匀温度场及其引起的脱空分析与试验研究[J]. 中国公路学报, 2021, 34(1):79-92 Yan Renzhang, Liu Jiaqi, Liu Shilong, et al. Analysis and experimental study on uneven temperature field and void caused by solar radiation in concrete filled steel tubular arch[J]. Chinese Journal of highway, 2021, 34(1):79-92
[15] 于孟生, 邓年春, 王龙林, 等. 特大拱桥钢管混凝土拱肋日照温度效应研究[J]. 公路工程, 2021, 46(3):99-104 Yu Mengsheng, Deng Nianchun, Wang Longlin, et al. Study on sunshine temperature effect of concrete filled steel tubular arch rib of super large arch bridge[J]. Highway engineering, 2021, 46(3):99-104
[16] 陈宝春, 刘振宇. 日照作用下钢管混凝土桁拱温度场实测研究[J]. 中国公路学报, 2011, 24(3):72-79 Chen Baochun, Liu Zhenyu. Study on temperature field of concrete filled steel tubular truss arch under sunshine[J]. Journal of China Highway, 2011, 24(3):72-79
[17] 周建庭, 刘建, 周文, 等. 温度变化对钢管混凝土拱桥斜拉扣挂预抬值与主拱圈线形的影响分析[J]. 中外公路, 2017, 37(4):62-66 Zhou Jianting, Liu Jian, Zhou Wen, et al. Analysis of temperature change on pre-lifting value of cable-stayed buckling and alignment of main arch ring of concrete filled steel tubular arch bridge[J]. Chinese and Foreign Highway, 2017, 37(4):62-66
[18] 周倩, 周建庭, 马虎, 等. 钢管拱肋分段安装扣索一次张拉索力优化改进算法[J]. 交通运输工程学报, 2020, 20(1):93-99 Zhou Qian, Zhou Jianting, Ma Hu, et al. An improved algorithm for the optimization of the primary tensioning force of the steel pipe arch rib section[J]. Journal of Transportation Engineering, 2020, 20(1):93-99
[19] 王永宝, 廖平, 贾毅, 等. 循环温度对大跨混凝土拱桥长期变形行为的影响[J]. 桥梁建设, 2019, 49(3):57-62 Wang Yongbao, Liao Ping, Jia Yi, et al. Effect of cyclic temperature on long-term deformation behavior of long-span concrete arch bridge[J]. Bridge Construction, 2019, 49(3):57-62
[20] 刘红波, 陈志华, 周婷. 太阳辐射作用下钢管温度场分析[J]. 空间结构, 2011, 17(2):66-71 Liu Hongbo, Chen Zhihua, Zhou Ting. Research on temperature field of steel tube under solar radiation[J]. Spatial Structure, 2011, 17(2):66-71
[21] 苏金堂. 高原大温差地区钢管混凝土拱桥温度效应研究[D]. 西安:长安大学, 2019 Su Jintang. Thermal effect analysis of CFST arches in the plateau with large temperature difference[D]. Xi'an:Chang'an University, 2019
[22] 公路钢管混凝土拱桥设计规范:JTG/TD65-06-2015[S]. 北京:人民交通出版社, 2013 Code for design of highway concrete-filled steel tubular arch bridges:JTG/TD65-06-2015[S]. Beijing:People's Communications Press, 2013 [23] 钢管混凝土拱桥技术规范:GB50923-2013[S]. 北京:中国计划出版社, 2014 Code for technology of concrete-filled steel tubular arch bridges:GB50923-2013[S]. Beijing:China Planning Publishing House, 2014 [24] 王俊涛, 牛一森, 王闻墨, 等. 基于光纤束的高辐照度太阳模拟器[J]. 太阳能学报, 2021, 42(8):208-214 Wang Juntao, Niu Yisen, Wang Wenmo, et al. High irradiance solar simulator based on fiber bundle[J]. Journal of Solar Energy, 2021, 42(8):208-214
[25] 刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5):59-78 Liu Yongjian, Liu Jiang, Zhang Ning. A review of the study on sunshine temperature effects of bridge structures[J]. Journal of Civil Engineering, 2019, 52(5):59-78
[26] 陈友. 圆钢管结构日照非均匀温度效应分析与试验研究[D]. 哈尔滨:哈尔滨工业大学, 2016 Chen You. Analysis and experimental study on non-uniform temperature effect of sunshine on circular steel tube structures[D]. Harbin:Harbin Technical University, 2016 [27] 赵人达, 王永宝. 日照作用下混凝土箱梁温度场边界条件研究[J]. 中国公路学报, 2016, 29(7):52-61 Zhao Renda, Wang Yongbao. Study on temperature field boundary condition of concrete box girder under sunshine action[J]. Chinese Journal of Highways, 2016, 29(7):52-61
-
期刊类型引用(2)
1. 刘永健,闫新凯,刘江,白永新. 钢管混凝土拱温度效应的解析计算方法. 中南大学学报(自然科学版). 2025(01): 283-296 . 百度学术
2. 张伟. 三拱肋钢管混凝土拱桥施工过程分析. 交通世界. 2024(35): 160-162 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 54
- HTML全文浏览量: 4
- PDF下载量: 17
- 被引次数: 2