Study on the Deformation Characteristics of Compacted Loess under Rigid and Flexible Boundary Conditions
-
摘要: 刚性边界与柔性边界是目前在路基施工中所存在的两种主要边界条件, 而不同的边界条件对于路基土体的变形、沉降等具有显著的影响. 采用三向加载设备, 开展了不同压实度的黄土在刚性与柔性边界条件下的室内压缩试验, 探讨了不同边界条件对压实黄土变形的影响以及引起压实黄土变形存在差异的根本原因. 研究结果表明:压实度分别为88%、93%、96%的黄土在刚性和柔性边界条件下的三向受力压缩过程中抗压强度与压实度呈正相关; 且当压实度相同时, 围压越大, 压实度下降得越少. 提出了竖向应变与体应变之间的关系式, 并推导了竖向应变与侧向应变之间的关系式.Abstract: Rigid and flexible boundary conditions constitute the two predominant types of conditions encountered in roadbed construction, each having a substantial influence on the deformation and settlement characteristics of the foundational soil. Utilizing custom-designed triaxial loading apparatus, this research conducts a series of indoor compression tests on compacted loess with varying degrees of compaction, under both rigid and flexible boundary conditions. The investigation aims to unravel the effects of these conditions on the deformation behavior of compacted loess, as well as to identify the fundamental mechanisms contributing to variations in deformation. Our findings reveal that the compressive strength of loess-tested at compaction degrees of 88%, 93%, and 96%-exhibits a positive correlation with the degree of compaction during triaxial compressive loading under both types of boundary conditions. Moreover, under constant compaction degree, an increase in confining pressure results in a reduced reduction in compaction. The study further delineates equations for the relationships between vertical and volumetric strains, as well as between vertical and lateral strains.
-
-
[1] 贾亮, 朱彦鹏, 毕东涛. 黄土边坡稳定性的简单判别方法——以兰州地区阶地黄土边坡为例[J]. 应用基础与工程科学学报, 2012, 20(1):113-120 Jia Liang, Zhu Yanpeng, Bi Dongtao. Simple method for judging the stability of loess slope:Terrace loess slope in Lanzhou area as an example[J]. Journal of Basic Science and Engineering, 2012, 20(1):113-120
[2] 范永波, 李世海, 侯岳峰. 不同边界条件下土石混合体破坏机制研究[J]. 水文地质工程地质, 2013, (3):54-57+74 Fan Yongbo, Li Shihai, Hou Yuefeng. Research on failure mechanisms of soil-rock mixtures under different boundary conditions[J]. Hydrogeology & Engineering Geology, 2013, (3):54-57+74
[3] Wang L, Yang Z, Zhao J, et al. Seismic response analysis of earth-rock fill dam on deep overburden under viscoelastic boundary condition[J]. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 2021, 37(1)
[4] 张强, 汪小刚, 赵宇飞. 基于围压柔性加载的土石混合体大型三轴试验离散元模拟研究[J]. 岩土工程学报, 2019, 41(8):1545-1554 Zhang Qiang, Wang Xiaogang, Zhao Yufei. Discrete element simulation of large-scale triaxial tests on soil-rock mixtures based on flexible loading of confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8):1545-1554
[5] 施维成, 朱俊高, 代国忠, 等. 土体真三轴仪的边界效应试验[J]. 河海大学学报(自然科学版), 2017, 45(1):77-81 Shi Weicheng, Zhu Jungao, Dai Guozhong, et al. Boundary effect tests of true triaxial apparatus for soil[J]. Journal of Hohai University(Natural Sciences), 2017, 45(1):77-81
[6] 李志刚. 不同加载方式下土石混合体抗压强度的规律性研究[J]. 水运工程, 2015, (6):10-16 Li Zhigang. Compressive strength of rock and soil aggregate under different loading conditions[J]. Port & Waterway Engineering, 2015, (6):10-16
[7] 罗庆姿, 陈晓平, 袁炳祥. 柔性侧限条件下软土的变形特性及固结模型[J]. 岩土力学, 2019, 40(6):2264-2274 Luo Qingzi, Chen Xiaoping, Yuan Bingxiang. Deformation behavior and consolidation model of soft soil under flexible lateral constraint[J]. Rock and Soil Mechanics, 2019, 40(6):2264-2274
[8] 曹杰, 郑建国, 张继文, 等. 不同边界条件下黄土高填方沉降离心模型试验[J]. 中国水利水电科学研究院学报, 2017, 15(4):256-262 Cao Jie, Zheng Jianguo, Zhang Jiwen, et al. Centrifuge model test of settlement of loess high embankment under different boundary conditions[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(4):256-262
[9] 马少坤, 黄茂松, 刘怡林. 柔性和刚性浅基础的地基承载能力分析[J]. 岩土力学, 2008, 29(12):3375-3380 Ma Shaokun, Huang Maosong, Liu Yilin. Analysis of bearing capacity of subsoil under flexible and rigid shallow foundations[J]. Rock and Soil Mechanics, 2008, 29(12):3375-3380
[10] Loganathan N, Balasubramaniam A S, Bergado D T. Deformation analysis of embankments[J]. Journal of Geotechnical Engineering, 1993, 119(8):1185-1206
[11] Tavenas F, Mieussens C, Bourges F. Lateral displacements in clay foundations under embankments[J]. Canadian Geotechnical Journal, 1979, 16(3):532-550
[12] 罗庆姿, 陈晓平, 袁炳祥, 等. 柔性侧限条件下软土的变形特性及固结模型[J]. 岩土力学, 2019, 40(6):2264-2274 Luo Qingzi, Chen Xiaoping, Yuan Bingxiang, et al. Deformation behavior and consolidation model of soft soil under flexible lateral constraint[J]. Rock and Soil Mechanics, 2019, 40(6):2264-2274
[13] 余闯, 刘松玉. 路堤侧向变形性状及预测模型研究[J]. 岩土力学, 2008, (5):1305-1309 Yu Chuang, Liu Songyu. Study on the characteristic and prediction model for lateral deformations under embankments[J]. Rock and Soil Mechanics, 2008, (5):1305-1309
[14] 刘光秀, 李玉根, 曹艳妮. 路堤荷载下地基的侧向变形计算分析[J]. 岩土力学, 2018, 39(12):4517-4526+4536 Liu Guangxiu, Li Yugen, Cao Yanni. Calculation and analysis of lateral deformation of ground under embankment load[J]. Rock and Soil Mechanics, 2018, 39(12):4517-4526+4536
[15] 王峰, 金武, 王宏坤, 等. 考虑侧向变形影响的客运专线路基沉降的修正[J]. 岩土工程学报, 2010, 32(增2):245-248 Wang Feng, Jin Wu, Wang Hongkun, et al. Amendment of subgrade settlement of passenger dedicated line considering the lateral deformation effects[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2):245-248
[16] 杨果林, 丁加明. 膨胀土路基的胀缩变形模型试验[J]. 中国公路学报, 2006, (4):23-29 Yang Guolin, Ding Jiaming. Model test on expansi on and shrinkage deformation in expansive soil roadbed[J]. China Journal of High way and Transport, 2006, (4):23-29
[17] Prashant A, Penumadu D. Effect of intermediate principal stress on overconsolidated kaolin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(3):284-292
[18] Zhang Yu, Shao S J. An analysis of vertical loading deformation and strength characteristics of loess under plain strain condition[J]. China Civil Engineering Journal, 2016, 49(3):112-121
[19] 黄雪峰, 孔洋, 李旭东, 等. 压实黄土变形特性研究与应用[J]. 岩土力学, 2014, 35(增2):37-44 Huang Xuefeng, Kong Yang, Li Xudong, et al. Study and application of deformation characteristics of compacted loess[J]. Rock and Soil Mechanics, 2014, 35(S2):37-44
[20] 张洪亮, 胡长顺, 刘保健, 等. 压实石灰黄土力学特性试验[J]. 交通运输工程学报, 2003, (4):13-16 Zhang Hongliang, Hu Changshun, Liu Baojian, et al. Mechanical properties experiment of compacted loess-lime[J]. Journal of Traffic and Transportation Engineering, 2003, (4):13-16
[21] 黄文熙. 土的工程性质[M]. 北京:水利电力出版社, 1983:307-309 Hang Wenxi. The engineering properties of the soil[M]. Beijing:Water Resources and Electric Power Press, 1983:307-309
[22] Xu Yali, Guo Panpan. Disturbance evolution behavior of loess soil under triaxial compression[J]. Advances in Civil Engineering, 2020
[23] 姚占勇, 蒋红光, 孙梦林, 等. 细粒土路基平衡密度状态分析[J]. 中国公路学报, 2020, 33(9):94-103 Yao Zhanyong, Jiang Hongguang, Sun Menglin, et al. Analysis of equilibrium density state of highway subgrade with fine soils[J]. China Journal of Highway and Transport, 2020, 33(9):94-103
[24] Meng Z, Liyi C, Shanyong W, et al. Experimental study of the microstructure of loess on its macroscopic geotechnical properties of the Baozhong railway subgrade in Ningxia, China[J]. Bulletin of Engineering Geology and the Environment, 2020, 79:4829-4840
[25] 苗英豪, 胡长顺, 王秉纲. 路基填挖交界处路面裂缝的三维有限元分析[J]. 交通运输工程学报, 2005, (4):43-47 Miao Yinghao, Hu Changshun, Wang Binggang. 3-D FEM analysis of pavement crack at cut to fill location of subgrade[J]. Journal of Traffic and Transportation Engineering, 2005, (4):43-47
[26] Cheng H T, Liu B J, Xie Y J. Stress-strain-time behavior of compacted loess[J]. Journal of Chang'an University(Natural Science Edition), 2008, 1:28
计量
- 文章访问数: 64
- HTML全文浏览量: 1
- PDF下载量: 24