高级搜索
    申红彬, 陈建, 陈翠霞, 王海周, 马子普. 不平衡输沙Muskingum型床面边界条件的建立及应用[J]. 应用基础与工程科学学报, 2024, 32(5): 1227-1237. DOI: 10.16058/j.issn.1005-0930.2024.05.002
    引用本文: 申红彬, 陈建, 陈翠霞, 王海周, 马子普. 不平衡输沙Muskingum型床面边界条件的建立及应用[J]. 应用基础与工程科学学报, 2024, 32(5): 1227-1237. DOI: 10.16058/j.issn.1005-0930.2024.05.002
    SHEN Hongbin, CHEN Jian, CHEN Cuixia, WANG Haizhou, MA Zipu. Establishment and Application of a Muskingum-type Bed-boundary Condition in Non-equilibrium Sediment Transport[J]. Journal of Basic Science and Engineering, 2024, 32(5): 1227-1237. DOI: 10.16058/j.issn.1005-0930.2024.05.002
    Citation: SHEN Hongbin, CHEN Jian, CHEN Cuixia, WANG Haizhou, MA Zipu. Establishment and Application of a Muskingum-type Bed-boundary Condition in Non-equilibrium Sediment Transport[J]. Journal of Basic Science and Engineering, 2024, 32(5): 1227-1237. DOI: 10.16058/j.issn.1005-0930.2024.05.002

    不平衡输沙Muskingum型床面边界条件的建立及应用

    Establishment and Application of a Muskingum-type Bed-boundary Condition in Non-equilibrium Sediment Transport

    • 摘要: 床面边界条件是不平衡输沙研究的关键问题之一.基于不平衡输沙微分方程,通过将空间变量变换为时间变量,进而结合Muskingum法,推导建立了Muskingum型床面边界条件,分析研究Muskingum型床面边界条件式中的恢复饱和系数,构建了基于Muskingum型床面边界条件的不平衡输沙模型,并开展模拟应用.分析结果表明,在Muskingum型床面边界条件中,恢复饱和系数为底部挟沙能力与垂线平均挟沙能力的比值再乘以某一参数,该参数为底部特定条件含沙量(假设含沙量沿垂线分布不变)与底部挟沙能力对底部含沙量综合影响的权重系数.模型应用结果表明,沿程垂线平均含沙量、底部含沙量及两者比值的计算值与实测值变化趋势基本符合,含沙量垂线分布的模拟结果与实测数据符合良好,初步说明了所建模型的合理性.对Muskingum型床面边界条件中权重系数影响分析表明,权重系数是影响不平衡输沙恢复饱和系数及含沙量垂线分布变化的重要参数,其确定方法及沿程变化规律有待于后期进一步的研究.

       

      Abstract: The bed-boundary condition is an important problem in non-equilibrium sediment transport.In this study,this challenge is addressed by first transforming spatial variables into time variables in the context of unbalanced sediment transport differential equations.Building upon the Muskingum method,a Muskingum-type bed-boundary condition is proposed and the saturation recovery coefficient is analyzed.This innovative approach creates a basis for the establishment of non-equilibrium sediment transport models.The saturation recovery coefficient is found to be a product of two main factors:The ratio of bottom sediment carrying capacity to depth-averaged sediment carrying capacity,and a weighting coefficient on the bottom sediment concentration by the bottom special sediment concentration and bottom sediment carrying capacity.The latter is an essential parameter that interacts with the bottom sediment concentration,impacting the vertical sediment concentration distribution.The bottom special sediment concentration,representing a balanced vertical sediment distribution,further contributes to this complex equation.Applying the proposed model yields promising results.Simulations closely match the measured values of depth-averaged sediment concentration,bottom sediment concentration,and vertical sediment concentration distribution,preliminarily proving that the proposed method is feasible.Influence analysis on the weighting coefficient of the Muskingum-type bed-boundary condition indicates that it critically affects the saturation recovery coefficient and vertical sediment concentration distribution.This influential parameter warrants in depth exploration in further studies.

       

    /

    返回文章
    返回