Influence of Urea Pre-hydrolysis Strategy on Soft Clay Solidification by Microbes and Reactive Magnesia
-
摘要: 我国基础设施建设导致产生大量工程弃土,为实现软黏土的固化与资源化利用,提出了基于尿素预水解策略的生物碳化活性氧化镁技术.通过开展一系列的无侧限抗压强度测试、酸洗测试、干密度和含水率测试,重点探究了固化方式、预水解时间和尿素浓度对土体固化性能的影响.研究结果表明:(1)预水解策略可实现软黏土的高效固化,养护7d后生物碳化试样的强度相较于未预水解试样提升了1.5倍,甚至与养护28d水泥固化试样的强度相当;(2)预水解时间和尿素浓度的增加均可提高尿素水解量并产生更多碳酸根参与到活性氧化镁的生物碳化,但固化试样的强度整体呈现出先增后减的趋势,最优预水解时间和最优尿素浓度分别为12h和2mol/L;(3)适当增大碳酸根含量可促进更多胶结产物水合碳酸镁的形成,以提高固化试样的强度;但过高的碳酸根含量反而会影响水合碳酸镁的胶结性能,导致强度降低.Abstract: Substantial quantities of engineering waste soils are generated due to the rapid infrastructure development in China.To alleviate this issue,bio-carbonation of reactive magnesia (r-MgO) technology,utilizing a urea pre-hydrolysis strategy,was employed to solidify soft clay for resource utilization.The effects of solidification methods,pre-hydrolysis duration (T),and urea concentration (C) on soil improvement were systematically investigated through unconfined compressive strength tests,pickling-drainage tests,dry density measurements,and water content assessments.The results show that:(1) The urea pre-hydrolysis strategy significantly enhances the solidification of soft clay,with the 7-day cured bio-carbonized sample exhibiting a 1.5-fold strength increase compared to samples without pre-hydrolysis,matching the strength of Portland cement-treated samples with 28-day curing.(2) Increases in both T and C promote urea hydrolysis and produce more carbonate ions for r-MgO bio-carbonation;however,the strength of bio-carbonized samples shows a change from rise to fall,with optimum T and C at 12 hours and 2mol/L,respectively.(3) A moderate increase in carbonate content produces more hydrated magnesium carbonates (HMCs) to improve the strength of bio-carbonized samples,while excessive carbonate content inhibits strength enhancement by negatively affecting the cementation performance of HMCs.
-
Keywords:
- soft clay /
- reactive magnesia /
- bio-carbonation /
- pre-hydrolysis /
- microbes /
- unconfined compressive strength
-
-
[1] 肖建庄, 沈剑羽, 高 琦, 等.工程弃土现状与资源化创新技术[J].建筑科学与工程学报, 2020, 37(4):1-13 Xiao Jianzhuang, Shen Jianyu, Gao Qi, et al.Current situation and innovative technology for recycling of engineering waste soil[J].Journal of Architecture and Civil Engineering, 2020, 37(4):1-13
[2] 朱 伟, 刘汉龙,高玉峰.工程废弃土的再生资源利用技术[J].再生资源研究, 2001, (6):32-35 Zhu Wei, Liu Hanlong, Gao Yufeng.The technology for recycling of engineering waste soil[J].Recyclable Resources and Circular Economy, 2001, (6):32-35
[3] 李建明, 王志刚, 王一峰, 等.基于固体废弃物资源化利用的“无废城市”建设初探[J].中国水土保持, 2019, (7):25-29 Li Jianming, Wang Zhigang, Wang Yifeng, et al.A preliminary study on the construction of a "waste-free city" based on the resource utilization of solid wastes[J].Soil and Water Conservation in China, 2019, (7):25-29
[4] 张 燚, 严柏杨, 亓永帅, 等.自密实水泥土在地下工程回填中应用研究[J].河南科学, 2021, 39(1):98-104 Zhang Yi, Yan Baiyang, Qi Yongshuai, et al.The application of self-compacting cemented soil for the foundation excavation backfill in underground construction[J].Henan Science, 2021, 39(1):98-104
[5] 廖雄飞, 王 婧, 张璟泓.工程弃土的陆域回填再利用技术[J].水运工程, 2021, (7):185-191 Liao Xiongfei, Wang Jing, Zhang Jinghong.Land backfill and reuse technology of engineering waste soi[J].Port & Waterway Engineering, 2021, (7):185-191
[6] 易昕政, 骆睿栋, 高 游, 等.固化废弃软黏土的强度特性及水稳定性研究[J].硅酸盐通报, 2022, 41(3):976-984 Yi Xinzheng, Luo Ruidong, Gao You, et al.Research on strength behavior and water stability of solidified waste soft clay[J].Bulletin of the Chinese Ceramic Society, 2022, 41(3):976-984
[7] 马 聪.饱和软土高效固化剂及固化土强度特性研究[D].上海:上海交通大学,2019 Ma Cong.Investigation on the high-efficiency stabilizer for saturation soft clay and strength characteristics of stabilized clay[D].Shanghai:Shanghai Jiao Tong University, 2019 [8] Yang Y, Ruan S Q, Wu S F, et al.Biocarbonation of reactive magnesia for soil improvement[J].Acta Geotechnica, 2021, 16:1113-1125
[9] Zhang J, Li Y, Luo Y, et al.An experimental study of mitigating coastal dune erosion by using bio-carbonization of reactive magnesia cement[J].Marine Georesources & Geotechnology, 2024, 42(2):161-175
[10] Dong Z H, Pan X H, Tang C S, et al.An efficient microbial sealing of rock weathering cracks using bio-carbonation of reactive magnesia cement[J].Construction and Building Materials, 2023, 366:130038
[11] Wang D L, Tang C S, Pan X H, et al.Construction and demolition waste stabilization through a bio-carbonation of reactive magnesia cement for underwater engineering[J].Construction and Building Materials, 2022, 335:127458
[12] 黄 涛, 方祥位, 张 伟, 等.活性氧化镁-微生物固化黄土试验研究[J].岩土力学, 2020, 41(10):3300-3306+16 Huang Tao, Fang Xiangwei, Zhang Wei, et al.Experimental study on solidified loess by microbes and reactive magnesium oxide[J].Rock and Soil Mechanics, 2020, 41(10):3300-3306+16
[13] Wang R, Tang C S, Pan X H, et al.Stabilization of dredged sludge using bio-carbonation of reactive magnesia cement method[J].Acta Geotechnica, 2023, 18(3):1529-1541
[14] 吴尚彬, 贾苍琴, 王贵和.微生物-活性氧化镁固化红黏土试验研究[J].人民长江, 2022, 53(8):167-172 Wu Shangbin, Jia Cangqin, Wang Guihe.Experimental study on microbial-active magnesia solidified red clay[J].Yangtze River, 2022, 53(8):167-172
[15] 陈 哲, 方祥位, 刘汉龙, 等.氧化镁掺量对氧化镁微生物固化电解锰废渣影响研究[J].岩石力学与工程学报, 2020, 39(增2):3687-3695 Chen Zhe, Fang Xiangwei, Liu Hanlong, et al.Influence of MgO content on solidified electrolytic manganese residue with MgO and microbe[J].Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2):3687-3695
[16] Yan J C, Wu H X, Ding Y M, et al.Bio-carbonization of reactive magnesia for sandy soil solidification[J].Geomicrobiology Journal, 2023, 40(6):519-526
[17] Dejong J T, Fritzges M B, Nusslein K.Microbially induced cementation to control sand response to undrained shear[J].Journal of geotechnical and geoenvironmental engineering, 2006, 132(11):1381-1392
[18] 交通运输部.公路土工试验规程:JTG 3430—2020[S].北京:人民交通出版社, 2020 Ministry of Transport of the People’s Republic of China.Test methods of soils for highway engineering:JTG 3430—2020[S].Beijing: China Communication Press, 2020 [19] Tang C S, Yin L Y, Jiang N J, et al.Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil:a review[J].Environmental Earth Sciences, 2020, 79:1-23
[20] 谢约翰, 唐朝生, 尹黎阳, 等.纤维加筋微生物固化砂土的力学特性[J].岩土工程学报, 2019, 41(4):675-682 Xie Yuhan, Tang Chaosheng, Yin Liyang, et al.Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J].Chinese Journal of Geotechnical Engineering, 2019, 41(4):675-682
[21] 王 瑞, 泮晓华, 唐朝生, 等.MICP联合纤维加筋改性钙质砂的动力特性研究[J].岩土力学, 2022, 43(10):2643-2654 Wang Rui, Pan Xiaohua, Tang Chaosheng, et al.Dynamic behaviors of MICP and fiber-treated calcareous sand under dynamic triaxial testing[J].Rock and Soil Mechanics, 2022, 43(10):2643-2654
[22] 工业和信息化部.轻烧氧化镁化学活性测定方法:YB/T 4019—2020[S].北京:金工业出版社, 2020 Ministry of Industry and Information Technology of the People’s Republic of China.Determination of chemical activity of light calcined magnesia:YB/T 4019—2020[S].Beijing:Metallurgical Industry Press, 2020 [23] Wang R, Tang C S, Pan X H, et al.Efficient stabilization of dredged sludge with high water content using an improved bio-carbonation of reactive magnesia cement method[J].Journal of Rock Mechanics and Geotechnical Engineering, 2024
[24] 住房和城乡建设部.土工试验方法标准:GB/T 50123—2019[S].北京:中国计划出版社, 2019 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method:GB/T 50123—2019[S].Beijing:China Planning Press, 2019 [25] Wang D L, Tang C S, Pan X H, et al.A novel bio-carbonation method of reactive magnesia with urea pre-hydrolysis for geomaterial stabilisation[J].Géotechnique, 2023:1-15
[26] Laidler K, Hoare J.The molecular kinetics of the urea-urease system.I.The kinetic laws[J].Journal of the American Chemical Society, 1949, 71(8):2699-2702
[27] Mitchell J K, Santamarina J C.Biological considerations in geotechnical engineering[J].Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10):1222-1233
[28] Peng E X, Hu X, Chou Y, et al.Study of microbially-induced carbonate precipitation for improving coarse-grained salty soil[J].Journal of Cleaner Production, 2022, 365:132788
[29] Hu L, Wang H, Xu P, et al.Biomineralization of hypersaline produced water using microbially induced calcite precipitation[J].Water Research, 2021, 190:116753
[30] Cui H Y, Hoang T, Chu J, et al.Pre-bio-carbonation method for using reactive MgO for rapid pavement repair and the carbonation mechanisms[J].Acta Geotechnica, 2024:1-13
[31] Dung N, Unluer C.Carbonated MgO concrete with improved performance:The influence of temperature and hydration agent on hydration, carbonation and strength gain[J].Cement and Concrete Composites, 2017, 82:152-164
[32] Dung N, Lesimple A, Hay R, et al.Formation of carbonate phases and their effect on the performance of reactive MgO cement formulations[J].Cement and Concrete Research, 2019, 125:105894
[33] Dung N T, Hoang T, Yang E H, et al.New frontiers in sustainable cements:Improving the performance of carbonated reactive MgO concrete via microbial carbonation process[J].Construction and Building Materials, 2022, 356:129243
计量
- 文章访问数: 44
- HTML全文浏览量: 0
- PDF下载量: 9