Model Experimental Study for the Effect of Seismic Action on the Soil Arch Effect in Sand
-
摘要: 土拱效应对地下结构的抗震稳定性具有重要影响,目前有关地震作用对土拱效应影响的研究较少.通过改进后的试验装置重复经典Trapdoor试验,并对土拱效应的土体模型施加地震作用,研究了土拱效应的发展阶段与影响范围、土拱效应影响下的土压力分布与土体位移以及土拱效应在地震作用下的变化,分析了地震作用对土拱效应的影响机理,讨论了土拱效应的变化对地下结构抗震稳定性的影响.研究结果表明:土拱效应的发展过程可以分为初始阶段、过渡阶段和稳定阶段,土拱效应的影响范围沿Trapdoor中心对称分布,宽度为2B(B为Trapdoor宽度),土拱效应影响范围内的土压力非均匀分布,Trapdoor区域上的土压力从边缘到中心逐渐增大,固定区域上的土压力从边缘到中心逐渐减少;土拱效应影响下的土体可以分为塌落区、土拱区和稳定区,土拱区破坏导致土拱效应在地震作用下发生衰退,土体埋深越小和Trapdoor位移越大时,地震作用对土拱区的破坏越大,土拱效应的衰退越严重;存在土体的临界埋深3B和地层损失平均高度的理想范围为1.3%B~4.2%B,当土体埋深大于临界埋深且地层损失的平均高度控制在理想范围内时,地下结构上方的土拱效应发展程度最大,地震作用对土拱效应的影响最小,最有利于地下结构的抗震稳定性.Abstract: The soil arch effect has important implications for the seismic stability of underground structures,but there have been few studies on the effect of seismic action on the soil arch effect.By repeating the classical Trapdoor test with a modified test apparatus and applying seismic effect to the soil arching model,the development stages and the influence range of the soil arch effect,the soil pressure distribution and the soil displacement under the influence of the soil arch effect,the change of the soil arch effect under the seismic effect are studied,the mechanism of the seismic effect on the soil arch effect is analyzed,the effect of the change of the soil arch effect on the seismic stability of underground structures is discussed.The results show that the development process of soil arch effect can be divided into initial stage,transition stage and stabilization stage.The influence range of the soil arch effect is symmetrically distributed along the Trapdoor center with a width of 2B(B is the width of Trapdoor).The soil pressure distribution within the influence range of the soil arch effect is non-uniform.The soil pressure on the Trapdoor gradually increases from the edge to the center,and the soil pressure on the fixed area gradually decreases from the edge to the center.The soil under the influence of the soil arch effect can be divided into collapse zone,soil arch zone and stability zone.The destruction of the soil arch zone leads to a recession of the soil arch effect under the seismic action.The smaller the buried depth and the larger the Trapdoor displacement,the greater the destruction of the soil arch zone and the more severe the recession of soil arch effect.The critical depth of the soil is 3B and the ideal range for the average height of ground loss is 1.3%B~4.2%B.When the buried depth is greater than the critical depth and the average height of ground loss is within the ideal range,the development of the soil arch effect above the underground structure is the greatest,and the seismic action on the soil arch effect is the least,which is most beneficial to the seismic stability of the underground structure.
-
-
[1] Ma C, Lu D, Du X, et al.Effect of buried depth on seismic response of rectangular underground structures considering the influence of ground loss[J].Soil Dynamics and Earthquake Engineering, 2018, 106:278-297
[2] 何 川, 耿 萍.盾构隧道实用抗震计算方法研究[J].中国公路学报, 2020, 33(12):15-25 He Chuan, Geng Ping.Research on practical seismic analysis methods of shield tunnel[J].China Journal of Highway and Transport, 2020, 33(12):15-25
[3] 耿 萍, 何 川, 晏启祥.隧道结构抗震分析方法现状与进展[J].土木工程学报, 2013, 46(增1):262-268 Geng Ping, He Chuan, Yan Qixiang.The current situation and prospect of seisimic analysis methods for tunnel structure[J].China Civil Engineering Journal, 2013, 46(S1):262-268
[4] Terzaghi K.Theoretical soil mechanics[M].London:Chapman & Hall, 1943
[5] Terzaghi K.Stress distribution in dry and in saturated sand above a yielding Trapdoor[C].1936
[6] Khatami H, Deng A, Jaksa M.Mapping soil arching-induced shear and volumetric strains in dense sands[J].Transportation Geotechnics, 2021, 28:100547
[7] George T I, Dasaka S M.Numerical investigation of soil arching in dense sand[J].International Journal of Geomechanics, 2021, 21(5):4021051
[8] Keawsawasvong S, Ukritchon B.Undrained stability of plane strain active Trapdoors in anisotropic and non-homogeneous clays[J].Tunnelling and Underground Space Technology, 2021, 107:103628
[9] Lai H, Zheng J, Cui M, et al.“Soil arching” for piled embankments:insights from stress redistribution behaviour of DEM modelling[J].Acta Geotechnica, 2020, 15(8):2117-2136
[10] Mcnulty J W.An experimental study of arching in sand[D].Urbana-Champaign:University of Illinois at Urbana-Champaign, 1965
[11] Iglesia G R, Einstein H H, Whitman R V.Investigation of soil arching with centrifuge tests[J].Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2):4013005
[12] Han J, Wang F, Al-Naddaf M, et al.Progressive development of two-dimensional soil arching with displacement[J].International Journal of Geomechanics, 2017, 17(12):4017112
[13] Zhang Z, Tao F, Han J, et al.Arching Development in Transparent Soil during Multiple Trapdoor Movement and Surface Footing Loading[J].International Journal of Geomechanics, 2021, 21(3):4020262
[14] Zhang Z, Tao F, Han J, et al.Influence of surface footing loading on soil arching above multiple buried structures in transparent sand[J].Canadian Journal of Civil Engineering, 2021, 48(2):124-133
[15] Al-Naddaf M, Han J.Spring-based Trapdoor tests investigating soil arching stability in embankment fill under localized surface loading[J].Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(9):4021087
[16] Al-Naddaf M, Han J, Xu C, et al.Experimental investigation of soil arching mobilization and degradation under localized surface loading[J].Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(12):4019114
[17] Al-Naddaf M A M.Investigation of soil arching stability under static and cyclic surface loading using Trapdoor model tests[D].Ann Arbor:ProQuest Dissertations & Theses, 2017
[18] Bao N, Wei J, Chen J, et al.Investigation of soil arching under cyclic loading using the discrete element method[J].International Journal of Geomechanics, 2021, 21(7):1-16
[19] Xu C, Zhang X, Han J, et al.Two-dimensional soil-arching behavior under static and cyclic loading[J].International Journal of Geomechanics, 2019, 19(8):4019091
[20] 崔蓬勃, 朱永全, 刘 勇, 等.非饱和砂土隧道土拱效应模型试验及颗粒流数值模拟研究[J].岩土力学, 2021, 42(12):3451-3466 Cui Pengbo, Zhu Yongquan, Liu Yong, et al.Model test of soil arching effect in unsaturated sand tunnel and particle flow numerical simulation[J].Rock and Soil Mechanics, 2021, 42(12):3451-3466
[21] Da Silva Burke T S, Elshafie M Z E B.Geosynthetic-reinforced soils above voids:Observation and prediction of soil arching[J].Geotextiles and Geomembranes, 2021, 49(3):579-592
[22] Khatami H, Deng A, Jaksa M.Passive arching in rubberized sand backfills[J].Canadian Geotechnical Journal, 2020, 57(4):549-567
[23] Khatami H, Deng A, Jaksa M.The arching effect in rubber-sand mixtures[J].Geosynthetics International, 2020, 27(4):432-450
[24] Dewoolkar M M, Santichaianant K, Ko H.Centrifuge modeling of granular soil response over active circular Trapdoors[J].Soils and Foundations, 2007, 47(5):931-945
[25] Rui R, van Tol A F, Xia Y Y, et al.Investigation of soil-arching development in dense sand by 2D model tests[J].Geotechnical Testing Journal, 2016, 39(3):20150130
[26] Rui R, Han J, van Eekelen S J M, et al.Experimental investigation of soil-arching development in unreinforced and geosynthetic-reinforced pile-supported embankments[J].Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(1):4018103
[27] Rui R, Zhai Y X, Han J, et al.Deformations in Trapdoor tests and piled embankments[J].Geosynthetics International, 2020, 27(2):219-235
[28] 陈其志, 郭生根, 徐长节, 等.砂土中松动土压力及松动区位移破坏形式的试验研究[J].中南大学学报(自然科学版), 2019, 50(1):108-117 Chen Qizhi, Guo Shenggen, Xu Changjie, et al.Trapdoor model tests on loosening earth pressure and failure mode of loosening zone in sand[J].Journal of Central South University(Science and Technology), 2019, 50(1):108-117
[29] 周思危, 冷伍明, 聂如松, 等.砂土拱效应滑移面几何轮廓与松动土压力研究[J].西南交通大学学报, 2021:1-10 Zhou Siwei, Leng Wuming, Nie Rusong, et al.Trapdoor tests on contour of slip surface and loosening soil pressure in sand[J].Journal of Southwest Jiaotong University, 2021:1-10
[30] Thielicke W, Sonntag R.Particle image velocimetry for MATLAB:Accuracy and enhanced algorithms in PIVlab[J].Journal of Open Research Software, 2021, 9(1):1-14
[31] Thielicke W, Stamhuis E J.PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB[J].Journal of Open Research Software, 2014, 2:1-10
[32] 杨晓燕.基于PIV的砂土中静压桩沉桩挤土效应模型试验研究[D].郑州:华北水利水电大学, 2016 Yang Xiaoyan.Model test research on the compacting effect of the jacked pressure in sand pile using PIV technique[D].Zhengzhou:North China University of Water Resources and Electric Power, 2016
[33] Zhao Y, Gong Q, Wu Y, et al.Evolution of active arching in granular materials:Insights from load, displacement, strain, and particle flow[J].Powder Technology, 2021, 384:160-175
[34] Chen R, Liu Q, Wu H, et al.Effect of particle shape on the development of 2D soil arching[J].Computers and Geotechnics, 2020, 125:103662
[35] 吴昌胜, 朱志铎.不同直径盾构隧道地层损失率的对比研究[J].岩土工程学报, 2018, 40(12):2257-2265 Wu Changsheng, Zhu Zhiduo.Comparative study on ground loss ratio due to shield tunnel with different diameters[J].Chinese Journal of Geotechnical Engineering, 2018, 40(12):2257-2265
[36] 万泽恩, 李树忱, 陈 健, 等.大直径泥水盾构穿越复杂环境地表垂直变形研究[J].应用基础与工程科学学报, 2021, 29(2):399-411 Wan Zeen, Li Shuchen, Chen Jian, et al.Study on ground vertical deformation of large-diameter slurry shield tunneling in complicated environment[J].Journal of Basic Science and Engineering, 2021, 29(2):399-411
[37] 于德海, 张 涛.邻近桥桩地铁盾构隧道变形规律及力学行为分析[J].应用基础与工程科学学报, 2019, 27(3):545-552 Yu Dehai, Zhang Tao.Analysis on deformation and mechanical behavior of shield tunnel near bridge pile[J].Journal of Basic Science and Engineering, 2019, 27(3):545-552
-
期刊类型引用(1)
1. 陈志敏,刘宝莉,陈骏,翟文浩,李文豪,王铎斌,蔡昀辰. 考虑颗粒组成与含水率的冰碛体成拱规律研究. 现代隧道技术. 2024(05): 200-209 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 39
- HTML全文浏览量: 0
- PDF下载量: 6
- 被引次数: 1