高级搜索

    基于XGBoost的丢头地震记录自动识别模型

    XGBoost-Based Missing Header Earthquake Records Automatic Recognizing Model

    • 摘要: 约1/2以上的强震动观测数据面临信号丢头的问题.如何在海量记录中自动剔除丢头的地震记录是地震P波参数相关算法研究的重要需求.基于极限梯度提升树(XGBoost)方法,建立了丢头地震动记录的自动识别模型.采用日本K-NET台网记录的970次地震的83 825条竖向分量加速度记录作为XGBoost模型的训练/测试数据集.该模型对正样本(未丢头记录)的识别成功率为92.07%,对负样本(丢头记录)的识别成功率为98.93%.在相同测试数据集下与基于Fisher线性分辨的传统模型相比,XGBoost模型不仅极大地提高了正样本的识别成功率,同时也保证了负样本较高的识别成功率.结果表明,该模型对(未)丢头地震记录有很高的识别精度,当需要从海量强震动观测数据中自动提取P波参数时,可以运用该模型自动剔除丢头地震记录,以避免丢头地震记录对数据质量造成污染.

       

      Abstract: Missing header earthquake records account for approximately half of the strong motion observation data.In P wave parameter related algorithm,it is necessary to automatically remove these recordings from large volume of observation data.This study proposes an automatic identification model of missing header earthquake records based on the eXtreme Gradient Boosting Tree (XGBoost) algorithm.The XGBoost model was established using 83 825 vertical component acceleration records from 970 earthquakes recorded by the K-NET in Japan.The results show that recognition success rate was 92.07% for positive samples (complete earthquake records) and 98.93% for negative samples (missing header earthquake records).Compared with Fisher Linear Discriminant model based on the same test dataset,our proposed model greatly improves the recognition success rate of positive samples,and keep high recognition success rate for negative samples.The results reveal that our model have high recognition accuracy for recordings with (without) missing header.Furthermore,when automatically extracting P-wave parameters from vast strong motion observation data,the model may be utilized to automatically pick and exclude recordings with missing header earthquake,avoiding these recordings degrading the data quality.

       

    /

    返回文章
    返回