高级搜索

    一种基于CBAM注意力机制优化YOLOv8n的滑坡检测方法

    A Landslide Detection Method Based on CBAM Attention Mechanism Optimized for YOLOv8n

    • 摘要: 高效准确的滑坡检测方法对于滑坡灾害的防灾预警具有重要的参考价值.当前滑坡目标检测研究方法易受复杂背景和小目标特征干扰,尤其在高分辨率遥感影像检测中,上述问题更加突出.鉴于此,发展了一种基于CBAM(Convolutional Block Attention Module)注意力机制优化YOLOv8n模型的高分辨率遥感影像滑坡目标检测方法(YOLOv8n-CBAM),并利用高分辨率遥感影像数据集对该方法进行了有效性验证.研究结果表明:(1)在复杂地形、植被等场景下对滑坡的检测,YOLOv8n-CBAM模型可有效提高模型对关键特征的关注度,从而提升小目标滑坡的检测精度,并且显著改善YOLOv8n模型存在的漏检和误检现象;(2)混淆矩阵归一化、精确率-召回率曲线、Loss曲线结果均表明,YOLOv8n-CBAM模型在滑坡目标的检测能力、准确性和鲁棒性方面均显著高于YOLOv8n模型;(3)相较于其他不同的目标检测方法,YOLOv8n-CBAM模型在准确率、召回率、mAP@0.5、mAP@0.5:0.95这4个评价指标中均表现出最优的检测效果.

       

      Abstract: Accurate landslide detection is crucial for disaster prevention and early warning.Existing detection methods often suffer from interference by complex backgrounds and small-target features,particularly in high-resolution remote sensing imagery.To address these challenges,this study proposes an enhanced YOLOv8n model incorporating the Convolutional Block Attention Module (CBAM) for landslide detection in high-resolution remote sensing images (YOLOv8n-CBAM),validated using high-resolution remote sensing datasets.The model demonstrates three key advantages:(1)It significantly enhances attention to critical features in complex terrains and vegetation-covered scenarios,improving detection accuracy for small landslides while reducing missed and false detections.(2)Evaluation metrics including normalized confusion matrix,precision-recall curves,and loss curves confirm superior detection capability,accuracy,and robustness compared to the baseline YOLOv8n model.(3)Comparative analysis reveals optimal performance in precision (89.7%),recall (86.4%),mAP@0.5 (90.1%),and mAP@0.5:0.95 (67.3%) metrics among state-of-the-art detection methods.

       

    /

    返回文章
    返回