高级搜索

    基于时间融合Transformer的港池基坑开挖诱发形变的智能预测模型

    Intelligent Prediction Model for Deformation Induced by Excavation of Harbor Foundation Pit Based on Temporal Fusion Transformer

    • 摘要: 大型港池工程的基坑开挖阶段是整个建设过程中安全风险最高的环节.为提高形变预测精度并保障施工安全,提出一种基于时间融合Transformer(TFT)的多源信息融合预测模型.该模型在某超大型港池项目中引入历史形变数据与关键工程特征,构建混合深度学习框架,实现对未来形变趋势的精准预测.实验结果表明,模型在预测精度方面表现优异,平均绝对误差(MAE)为0.3755mm,均方误差(MSE)为0.2597mm2,平均绝对百分比误差(MAPE)为0.7971%.通过消融实验,验证了模型在实际工程中的适用性与有效性,为类似大型水工结构的变形监测提供了可靠的技术解决方案.

       

      Abstract: The excavation phase of large-scale port basin projects is the most hazardous stage in the entire construction process.To enhance the accuracy of deformation prediction during this critical phase and ensure construction safety,this study proposes a Temporal Fusion Transformer (TFT) model integrating multi-source information such as construction progress and groundwater level.The proposed model introduces historical deformation data and critical engineering features into a hybrid deep learning framework,accurately predicting future deformation trends in a mega port basin excavation project.Experimental results indicate that the model exhibits excellent predictive performance,achieving a mean absolute error (MAE) of 0.3755mm,mean squared error (MSE) of 0.2597mm2,and mean absolute percentage error (MAPE) of 0.7971%.Ablation experiments further validate the model’s applicability and effectiveness,it provides a reliable technical solution for deformation monitoring of similar large-scale hydraulic structures.

       

    /

    返回文章
    返回