高级搜索

    基于Transformer物理机理-数据协同驱动的航空发动机异常预测方法

    A Transformer-Based Physics-Data Collaborative Approach for Anomaly Prediction in Aero-Engines

    • 摘要: 针对航空发动机早期异常预测的需求,提出了一种基于Transformer架构的物理机理与数据协同驱动框架.该框架将物理约束融入轴承故障仿真数据的生成过程中,为Leffler-Kernel增强的Transformer模型提供具有物理一致性的仿真训练样本,从而显著提升了模型的物理可信度和泛化能力.在真实航空发动机实验平台上开展的人工故障轴承替换试验中,所采集的转子与机匣振动信号验证了该方法在早期故障识别中的优越预测性能.该方法具备良好的工程应用潜力,可为航空发动机系统的预测性维护与故障预防提供有力支持.

       

      Abstract: This paper proposes a physics-informed and data-driven framework based on Transformer architecture for early anomaly prediction in aero-engines.The framework embeds physical constraints into the bearing fault simulation data generation process,provide physically consistent simulation training samples for the Leffler-Kernel-enhanced Transformer model.This integration significantly enhances the model’s physical fidelity and generalization capability.Experimental results on a real-world dataset—where faulty bearings were manually replaced in an aero-engine testbed and vibration signals from both the rotor and casing were collected—demonstrate that the proposed method achieves strong predictive performance in early fault detection.The approach shows high potential for practical engineering applications and contributes to predictive maintenance and fault prevention in aero-engine systems.

       

    /

    返回文章
    返回