高级搜索

    基于时间卷积注意力的航空轴承剩余寿命预测

    Remaining Useful Life Prediction of Aviation Self-Lubricating Bearings Based on Temporal Convolutional Attention

    • 摘要: 航空自润滑轴承作为航空飞行器襟翼铰链机构的核心承载部件,其健康状态直接关系到航空飞行器的运行安全.针对传统数据驱动方法精度低和泛化性弱的问题,提出一种融合现代时间卷积网络与Transformer的航空襟翼铰链机构剩余寿命预测方法.该方法通过自主搭建的实验平台,采集自润滑轴承实际飞行工况运行过程中的声发射信号,利用现代时间卷积网络的扩张因果卷积特性,实现了长时间序列数据的全局特征提取,并结合Transformer的自注意力机制对局部微小特征及深层特征进行精细化挖掘,构建了端到端的寿命预测模型.实验结果表明,在基于实际工况采集的数据集验证中,该模型的均方根误差(RMSE)稳定控制在2%以内,相较于深度学习基线模型,其预测精度提升了30%~50%.该研究成果证实了所提方法的可靠性与稳定性.

       

      Abstract: As a core loading component of the flap hinge mechanism in aircraft,the remaining useful life (RUL) of aviation self-lubricating bearings directly affects operational safety during aircraft takeoff and landing phases.To address the issues of low accuracy and weak generalization in traditional data-driven methods,this paper proposes a remaining useful life prediction method for aviation flap hinge mechanisms that integrates modern temporal convolutional networks with Transformer.By establishing an experimental platform to collect acoustic emission signals from self-lubricating bearings under actual flight conditions,the method leverages the dilated causal convolution characteristics of modern temporal convolutional networks to achieve global feature extraction from long-term time series data.Combined with Transformer’s self-attention mechanism,it performs refined mining of local micro-features and deep-level characteristics,constructing an end-to-end life prediction model.Experimental results demonstrate that on datasets collected under actual operating conditions,the model’s root mean square error (RMSE) remains consistently below 2%,showing 30%~50% improvement in prediction accuracy compared with deep learning baseline models.The research outcomes confirm the reliability and stability of the proposed method.

       

    /

    返回文章
    返回