高级搜索

    基于混合优化模型和关键气象因素的参考作物蒸散量估算研究

    Estimation Study for Reference Crop Evapotranspiration Based on Hybrid Optimization Model and Key Meteorological Factors

    • 摘要: 准确获取参考作物蒸散量(Reference crop evapotranspiration,ET0)对衡量作物需水量和优化灌溉水资源管理具有重要意义.为在气象观测信息受限条件下实现ET0的高效、准确估算,采用鲸鱼优化算法(Whale optimization algorithm,WOA)对轻量级梯度提升机(Light gradient boosting machine,LightGBM)的超参数进行优化,建立了一种混合优化模型WOA-LightGBM.选取河南省15个气象站点逐日气象数据系统评估此模型的性能,并将其与LightGBM、K最近邻算法(K-nearest neighbor,KNN)和随机森林(Random forest,RF)模型进行比较.采用RF、自适应增强(Adaptive boosting,AdaBoost)和梯度提升树(Gradient boosting decision tree,GBDT)构建集成嵌入式特征选择方法(Ensemble embedded feature selection,EEFS),用于分析对估算ET0有重要影响的气象因素,以确定最佳输入组合.研究结果表明:基于EEFS方法得出的4种重要组合作为输入,模型能更准确估算ET0;在河南省的ET0估算中,所有模型均表现出显著的空间差异.相较于LightGBM、KNN和RF模型,WOA-LightGBM模型在不同区域均表现出稳定的高估算精度,其决定系数R2、纳什效率系数NSE、均方根误差RMSE和平均绝对误差MAE分别为0.897~0.998、0.897~0.998、0.071~0.545mm·d-1和0.052~0.409mm·d-1;模型的ET0估算精度存在季节差异,春季和秋季的估算精度受湿度和风速影响较大,尤其是冬季,其受到的影响更为显著;在目标站点数据不足的情况下,基于邻近站点数据训练的WOA-LightGBM模型仍能维持较高精度.总之,该研究为在气象资料有限的情况下准确估算ET0提供了可靠的解决方案.

       

      Abstract: Accurately obtaining reference crop evapotranspiration (ET0) is crucial for assessing crop water requirements and optimizing irrigation water resource management.To achieve efficient and accurate estimation of ET0 under conditions of limited meteorological observation data,a hybrid optimization model,WOA-LightGBM,was developed by applying the Whale Optimization Algorithm (WOA) to optimize the hyperparameters of the Light Gradient Boosting Machine (LightGBM).Daily meteorological data from 15 stations in Henan Province were selected to evaluate the model’s performance,which was compared with LightGBM,K-nearest neighbor (KNN),and Random Forest (RF) models.An ensemble embedded feature selection (EEFS) method,constructed using RF,Adaptive Boosting (AdaBoost),and Gradient Boosting Decision Tree (GBDT),was employed to analyze meteorological factors significantly influencing ET0 estimation,thereby determining the optimal input combinations.The results show that models using the four important combinations derived from the EEFS method provide more accurate ET0 estimates.In ET0 estimation in Henan Province,all ET0 models exhibit significant spatial variability.Compared to the LightGBM,KNN,and RF models,the WOA-LightGBM model demonstrates stable and high estimation accuracy across different regions,with ranges of the coefficient of determination (R2),nash Sutcliffe efficiency (NSE),root mean square error (RMSE),and mean absolute error (MAE) of 0.897~0.998,0.897~0.998,0.071~0.545mm·d-1,and 0.052~0.409mm·d-1,respectively.Seasonal variations affect the estimation accuracy,with humidity and wind speed having greater impacts in spring and autumn,especially in winter.Even when data from target stations are missing,the WOA-LightGBM model trained on data from nearby stations maintained high accuracy.This study provides a reliable reference basis for accurately estimating ET0 under limited meteorological conditions.

       

    /

    返回文章
    返回